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•  Why study neutrinos and 
antineutrinos? 

•  Antineutrinos in the NuMI 
neutrino beam (3x1020 POT) 
–  Selection 
–  Extrapolation 
–  Fitting 
–  Results 

•  Antineutrinos in the NuMI 
antineutrino beam (1.7x1020 POT) 
–  Selection 
–  Results 
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Why study νµ and νµ? 

•  Antineutrino parameters 
are less precisely known. 
–  No direct precision  

measurements 
–  MINOS is the only oscillation 

experiment that can do event- 
by-event separation 

•  Differences may imply new physics in the neutrino sector 
manifested as a difference in the effective mass-splitting. 
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Why study νµ and νµ? 
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•  Antineutrino parameters 

are less precisely known. 
–  No direct precision  

measurements 
–  MINOS is the only oscillation 

experiment that can do event- 
by-event separation 

•  Differences may imply new physics in the neutrino sector 
manifested as a difference in the effective mass-splitting. 
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Why study νµ and νµ?
Neutrino-to-antineutrino Transitions

•  MINOS is sensitive to helicity-flipping transitions  

•  due to Majoranna mass terms 

•  Predicted at the level of 10-7 due to (mν/Eν) suppression 
•  Only experimentally tested with νe in the 1980’s 
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!L ! !L( )c =!R

22 Physics of Neutrinos and Antineutrinos

Finally, using the relation ν̄Lγ5 = νL,

γ5(νL)c = − (νLC)T (2.80)

= CνT
L (2.81)

= (νL)c (2.82)

showing that (νL)c behaves like the right-handed component of a field and can be used to construct

a mass term. That term has the form:

LM
mass = −1

2

�

l�,l

ν̄l�LMM
l�l (νlL)c + h.c. (2.83)

or, in matrix form,

LM
mass = −1

2
ν̄LMM (νL)c + h.c., (2.84)

where MM is a complex matrix and νT
L = (νeL νµL ντL). Unlike the Dirac mass term, this term

is not invariant under global gauge transformations. Where the left- and right-handed Dirac fields

transformed in the same way (Equation 2.68), the relationship between the left- and right-handed

Majorana neutrinos requires that

νlL → eiΛνlL, νlR = (νlL)c → e−iΛ (νlL)c , (2.85)

and Equation 2.83 is not invariant under this transformation. Consequently, a theory with Majorana

neutrinos does not conserve total lepton number.

The relationship between the left- and right-handed fields in this mass term provide a constraint

on the form of MM :

ν̄LMM (νL)c = ν̄LMMCν̄T
L (2.86)

= −ν̄L

�
MM

�T
CT νT

L (2.87)

= ν̄L

�
MM

�T
CνT

L (2.88)

using the anticommuntation properties of fermion fields. This implies that

MM =
�
MM

�T
(2.89)

or that MM is symmetric. Thus, when the matrix is diagonalized to find the physical neutrino
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Peak vs. Tail
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•  νµ’s from low-pt π-’s 
–  Pass through horn 

necks 

•  νµ’s from high-pt π+’s 
–  Focused by horns 

Monte Carlo 
Focused 

Monte Carlo 
Unfocused 
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•  Antineutrino signature: µ+ 
–  Ex:  
–  Long tracks, curving outwards 

in the detector 

•  Just selecting positive events 
is insufficient 

! 

" µ + p# n + µ+

! 

"

¤ 
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" µ

! 

" µ

Selection: Charge Sign

(q/p) / σ(q/p)  

•  Significance of the 
measured curvature 

|Relative angle - π| 

•  Change in angle between 
the beginning and end of 
the track. 
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Selection: CC-NC

Discriminates on: 
•  Event length 
•  ~ dE/dx 
•  ~ y 

WS & NC
Bkgd. Signal
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SignalSignal

Signal WS & NC
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WS & NC
Bkgd.



Selection

82% efficiency 
97% purity 
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Near Detector Spectrum
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•  The Near Detector and Far Detector 
spectra are not identical. 
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•  A beam matrix transports measured 
Near Det. spectrum to the Far Det. 

•  Matrix encapsulates knowledge of 
meson decay kinematics and beamline 
geometry 

•  MC used to correct for energy smearing 
and acceptance 
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Systematics

•  Systematic errors are much 
smaller than the statistical 
uncertainty. 

•  Systematics are small at low 
transition probability, 
comparable to statistics at high. 

•  The white bars show all errors 
summed in quadrature. 
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Neutrino-mode Signals
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Far Detector Spectrum

•  Observe: 
 42 events 

•  CPT Oscillations: 
– 58.3 ± 7.6 (stat.)  

        ± 3.6 (syst.) 
•  No oscillations: 

– 64.6 ± 8.0 (stat.)  
        ± 3.9 (syst.) 
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•  Fit performed by minimizing a binned -log likelihood 

•  A Feldman-Cousins approach is used 
–  Many fake experiments used create empirical χ2 distributions 

as a function of the parameters 
–  Systematics included in the fake experiments 
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−2 lnL(�α) = 2
�

i

�
pi(�α)− di + di ln

di
pi(�α)

�

�α = [∆m2
atm, sin

2(2θ23)]

Fitting for Oscillations



•  Each point is the Δχ2 
that encompasses 90% 
of fake experiments 
–  A perfectly Gaussian 

surface would be 4.7 
everywhere. 
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Better than Gaussian
Physical boundary gives 

extra information 
 

Worse than Gaussian
Degeneracy with fast 

oscillations 
 

Feldman-Cousins



Oscillations Result
•  Sensitivity limited due to: 

–  Low statistics 
–  Few low-energy events 
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•  MINOS observes  
no appearance of νµ  
in the NuMI beam 

•  We limit the fraction, α, of 
events transitioning from 
νµ to νµ:  

 α < 0.026 (90% C.L.) 

22

90% 

Appearance Result
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P(" µ #" µ ) =$ sin2(2%)sin2 1.27&m
2L

E
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( 
) 
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+ 
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•  νµ’s from low-pt π-’s 
–  Focused by horns 

•  νµ’s from high-pt π+’s 
–  Pass through horn 

center 

Monte Carlo 
Focused 

Monte Carlo 
Unfocused 

Monte Carlo!



•  x1.3 lower π- production 
•  x2.3 lower interaction cross-section 
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Eur. Phys. J. C 49 897 (2007) Phys. Rev. D 81 072002 (2010) 

Antineutrino Cross-section



Selecting Charged Currents

•  Basic selection 
–  In-time with the spill 
–  In the fiducial volume 
–  At least 1 reconstructed track 

•  CC/NC separation using a 
kNN algorithm 

–  Compare to Monte Carlo events 
–  Fraction of signal in k most 

similar events is the discriminant 
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k-Nearest Neighbors


“kNN”

Charged current selector

! Combine information using a k-Nearest-Neighbour algorithm

! For each event to be classified: find 80 closest Monte Carlo events

! PID value is the fraction of these neighbours that are charged current
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•  CC/NC separation using a 
kNN algorithm 

•  4-parameter comparison 
–  Track length 
–  Transverse energy profile 
–  Energy deposited per plane 
–  Energy fluctuations along the 

track 
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•  CC/NC separation using a 
kNN algorithm 

•  4-parameter comparison 
–  Track length 
–  Transverse energy profile 
–  Energy deposited per plane 
–  Energy fluctuations along the 

track 
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Selecting Charged Currents
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•  Use the CC/NC Selector 
–  Removes NC and high-y CC interactions 

•  Accept only events with positive reconstructed charge 

Alex Himmel 31


AcceptAccept

Main Selector

Selecting CC Antineutrinos



High energy νµ contamination does not  
affect the oscillation result 
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Signal Bkgd. 
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Near Detector Spectrum
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•  A beam matrix transports measured 
Near Det. spectrum to the Far Det. 

•  Matrix encapsulates knowledge of 
meson decay kinematics and beamline 
geometry 

•  MC used to correct for energy smearing 
and acceptance 
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•  Effect of uncertainties 
estimated by fitting 
systematically shifted MC 

•  Systematics are very small 
relative to the statistical 
uncertainty 

Monte Carlo 

Systematics
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Far Detector Data
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è 156 expected without                       
  oscillations 
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•  Good data/mc agreement in  
charge/momentum 

•  Antineutrinos focused inwards 

•  Neutrinos defocused outwards 
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è 156 expected without oscillations 
è 97 observed events 
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è 156 expected without oscillations 
è  97 observed events 
No-oscillations hypothesis is disfavored at 6.3σ 
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Antineutrino Contour
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•  Dashed line shows the antineutrino prediction at the 
neutrino best fit point.  
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Neutrinos and Antineutrinos
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Combined Significance
•  Probability of having the same underlying 

parameters for neutrinos and antineutrinos: 
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•  NuMI has begun accumulating another ~2x1020 POT (fingers 
crossed) of antineutrino running. 
–  More than double the dataset 
–  Can reduce Δm2 error by more than 30% 
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With More Antineutrinos…



Conclusion
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•  MINOS made the first observation νµ in a neutrino beam 

•  MINOS has the first direct, precision measurement |Δm2
atm| 

•  Measured with a dedicated antineutrino run 

•  There is a 2% probability that the antineutrinos and neutrinos have 
the same underlying oscillation parameters 

•  With more antineutrino beam we can rapidly improve the 
precision on the antineutrino oscillation parameters 
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"m atm
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